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ABSTRACT 
The alignment of high energy laser beams for potential fusion experiments demand high precision and 
accuracy by the underlying positioning algorithms. This paper discusses the feasibility of employing on-
line optimal position estimators in the form of model-based processors to achieve the desired results. Here 
we discuss the modeling, development, implementation and processing of model-based processors applied 
to both simulated and actual beam line data. 
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INTRODUCTION 
 
 High power, tightly focused laser beams are required to achieve successful ignition and therefore 
fusion at the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF).1 The 
beams must simultaneously focus precisely on a nanoscale target capsule to succeed. Therefore, there are a 
large number of beam alignment measurements that must be performed along the NIF beam line to assure 
that the pointing and alignment control system centers the beam in order to provide the maximum energy 
on the fusion target located in the associated chamber.1-3 An automatic alignment (AA) system was 
designed and implemented to assure successful deployment of the high energy beam in each of the 192 
beam lines. However, since a variety of techniques are provided to perform the alignment, there is a 
quantifiable uncertainty associated with each technique that may or may not meet the desired accuracy and 
precision specifications associated at each control point. Therefore, there is a need for a post-processing 
technique which accepts as input an uncertain position measurement and provides as output an improved 
position estimate (see Fig. 1). 
 Perhaps the most challenging of all beam line measurements are those made on the KDP 
(potassium dihydrogen phosphate) crystals. These crystals are critical elements used to double or triple the 
frequency of the laser beam as it passes providing a shorter wavelength. The higher frequency determined 
from the target physics enables laser plasma interactions for fusion. The NIF final optics assembly (FOA) 
matches lenses to this particular frequency producing the beam that is tightly focused on the target capsule 
required to achieve fusion ignition. In order for the KDP crystals to optimally double or triple the laser 
operating frequency, they must be precisely positioned at the appropriate angle. This is one of the critical 
tasks of the AA system. The KDP measurement consists of using a charge coupled device (CCD) imaging 
camera which produces a noisy back reflection image of a diagnostic test beam. The noise is caused by the 
camera itself as well as uncertainties that are due to small pointing errors made during the measurement. A 
sophisticated two-dimensional (2D) phase-only, matched-filter4 algorithm was developed to provide the 
initial raw position estimates for our model-based scheme. The advantage of the model-based technique5,6 
in this application is that it enables us to decompose the noise from the process (sometimes called boiling 
noise) as well as the actual measurement.  
 The image is acquired from the CCD imaging camera produces both noisy measurement and 
reference images. A precise reference image is used to provide the desired fiducial that is used by the 
alignment system. Corrections to align the measured image with the reference is accomplished using the 
dedicated control loops that adjust pointing mirror stepping motors until the deviations between both 
reference and measured positions are within acceptable limits.3  Ultimately, the goal is to make this 
difference zero assuring proper beam alignment. Fig. 2 shows a set of measured KDP images with position 
estimates along with the reference measurement made from a very precise device. Note how tightly 
clustered the reference positions are compared to the raw measurements indicating its high precision. The 
objective, therefore, of the control loop is to position the beam mirrors such that these positions completely 
overlap (zero deviation) as shown in the bottom of the figure. Thus, the smaller the xy-deviations, the closer 
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the beam is to the centerline reference assuring a tightly focused, high energy beam on target---the goal of 
the alignment system.  
 Thus, we discuss the feasibility of applying model-based processors as an on-line post-processing 
technique to improve the final position estimates provided by a variety of centroid based estimators in a 
high energy laser beam line. These estimators are used to align high powered laser beams for experiments 
at NIF. In this paper we first motivate a stochastic model of the overall process and measurement system in 
Sec. 2. Here we show that a Gauss-Markov formulation is quite reasonable. Once this is complete, we 
discuss the underlying model-based theory for position estimation in Sec. 3. With the theory in hand, we 
develop the processor for the KDP application in Sec. 4 through ensemble statistics, simulation and 
eventual application to real measurement and reference data. Finally we conclude our results and point to 
future work in the final section. 
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Fig. 1. Optimal position estimation design using model-based post-processing. 

 
STOCHASTIC MODELING OF POSITION MEASUREMENTS 

 
 The typical beam position estimator is accomplished by calculating the centroid of the measured 
images, that is, the centroid estimator is determined by the calculating the normalized position means given 
by 
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where Pr( , )x y  is the joint probability density function.7 The point is that these measured positions are 
derived from the associated noisy CCD images. We define the true centroid positions by the position vector 
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where 
1pN ×∈p R , and k represents the thk  sample (time). Since quite a number of images are acquired 

daily, a large data base consisting of position estimates are available, say, 
{ }( ) : ( );  1, ,P k k k K= =p " and the position estimates are to be updated continuously. Since we know 
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that the images are contaminated with noise and uncertainty, a more reasonable position measurement 
model is given by 
 ( ) ( ) ( )k C k k= +z p v , (3) 

where 1, , ,   and (0, R )z pz N NN
vvC N××∈ ∈z p v R R v ∼ , that is, the measurement noise is 

assumed zero mean, multivariate Gaussian with covariance matrix, 

R v vN N
vv

×∈ R .
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Fig. 2. Raw KDP crystal back-reflection image and reference position estimates. 
 

 We also note that since the CCD camera uses the identical beam line to measure both images, we 
model the position estimates as piecewise constants contaminated with beam line noise besides that noise 
contributed by the measurement systems. This process noise can be considered fluctuations caused by the 
inherent system optical transfer functions and turbulence caused by the argon gas filled housing during the 
laser beam propagation. Therefore, we assume that the contaminated position measurement is represented 
as 

 ( ) ( );   (0) [ (0) y(0)]Tt t x= + =p 0 w p� , (4) 
in continuous time, but if we discretize over the k-sample images, then using first differences we obtain 

 1
1
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t

+
+

−
= = ∆ −
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p pp w� . (5) 

Substituting in Eq. (4) and assuming that kt k→ , we obtain the following Gauss-Markov position model 

 ( 1) ( ) ( )k k t k+ = + ∆p p w , (6) 

where 
1pN ×∈w R and (0, )wwRw N∼ along with the accompanying measurement model of Eq. (3). 

 ( ) ( ) ( )k C k k= +z p v , 
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where 
1 1, R ,  , R  for Rp z pzN N NN C× ××∈ ∈ ∈p w z v and the uncorrelated noises are given by: 

( )ppN(0,R ), N(0,R ) with (0) N (0),R (0)ww vvw v p p∼ ∼ ∼ , the initial mean and associated 

covariance. This completes the basic description of the underlying Gauss-Markov model. We note in 
passing that for a complete description of the general model including means, ( ),  ( )p zk km m with their 

associated covariances etc. (see Ref. 5 and 6 for more details).  
 Since we have both final measured and reference position estimates, we re-define a more 
convenient position vector by grouping the positions as 
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with the corresponding process noise covariance matrix given by 
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since each of the measured and reference images are uncorrelated. 
 This type of formulation enables us to estimate the process noise covariances independently for 
each image as well as characterize their uncertainties individually. Since the control loop jointly uses both 
the reference and measured images to produce its final centroid position estimates, we model the 
measurement matrix as the deviation (difference) between these data contaminated with independent 
measurement noise, that is, our measurement model of Eq. (3) becomes 
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with measurement covariance matrix 

 

2

2

| 0
R

0 |
r r

vv

vv

v v

σ

σ

 
 
 = − − −
 
 
 

, 

and 2 2 2 2 2 2  and  
r r r r r rvv xx yy v v x x y yσ σ σ σ σ σ= + = + . Note that the deviations are defined by  
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This completes the section on position (uncertainty) modeling, next we consider the development of the 
optimal position estimator. 
 

MODEL-BASED POSITION ESTIMATION THEORY 
 
 It is well-known that the optimal solution to the position estimation problem under the Gauss-
Markov model assumption is provided by the model-based (state-space) processor or Kalman filter.5,6 This 
solution can be considered a predictor-corrector design in which the processor uses the model (random 
walk) to predict in absence of a measurement and then corrects the estimate when the measurement 
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becomes available. Under the assumption of a perfect model, that is, the model imbedded in the process 
exactly matches the process, the MBP is capable of achieving the optimal minimum (error) variance 
estimate. 
 For the position estimation problem, the MBP takes on the following predictor-corrector form: 
Prediction:  ˆ ˆ( 1| ) ( | )k k k k+ =p p  

Innovation:  ˆˆ( 1) ( 1) ( 1| ) ( 1) ( 1| )k k k k k C k kε + = + − + = + − +z z z p  

Correction:  ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1)k k k k G k kε+ + = + + + +p p  

Gain:   1( 1) ( 1| ) ( 1)TG k P k k C R kεε
−+ = + +�  

for { } { }ˆ ˆ( 1| ) : ( ) | ( 1), , (1)  and ( 1| ) : ( ) | ( 1), , (1)k k E k k k k E k k+ = − + = −p p p p z z z z" " the 

underlying conditional means and G( 1) R z pN Nk ×+ ∈ is the corresponding gain matrix6  calculated by 
the corresponding error covariance matrix, 

( )ˆ ˆ( 1| ) Cov ( 1| )  with ( 1| ) : ( 1) ( 1| )P k k k k k k k k k+ = + + = + − +p p p p� � . The innovations 

covariance matrix is defined by 1( 1)R kεε
− + . 

 It is interesting to note that a necessary and sufficient condition for the MBP to be optimal is that 
the innovations sequence be zero mean and white♦ (uncorrelated) --- conditions that we test during 
processor design. We develop two techniques that are used to validate the position estimates from the daily 
measurements: zero-mean/whiteness test and the weighted-sum-squared-residual (WSSR) test. The main 
point to realize is that since we are using a recursive-in-time MBP, the innovations represent "how well the 
position model and its underlying statistics fit the raw data."   If it is an optimal fit, then the innovations 
should be zero-mean and statistically white (uncorrelated) and the tests evolve naturally.   
 The whiteness/zero-mean tests, that is, testing that 95% of the sample (normalized innovation)  
correlations lie within the bounds given by 
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both rely on quasi-stationary assumptions and sample statistics to estimate the required correlations.  
However, it can be argued heuristically that when the MBP estimator is tuned, the nonstationarities are 
being tracked by the processor and therefore, the innovations should be covariance stationary.   
 When data are nonstationary, then a more reliable statistic to use is the WSSR which is a measure 
of the overall global estimation performance of the processor again determining the "whiteness" of the 
innovation sequence.6  It essentially aggregates all of the information available in the innovations and tests 
whiteness by requiring that the decision function lies below the specified threshold to be deemed 
statistically white. If the WSSR statistic does lie beneath the calculated threshold, then theoretically, the 
estimator is tuned and said to converge or in our problem there is no abrupt change.  That is, for our raw 
position  measurements, we test that the corresponding innovations sequence is zero-mean/white by 
performing a statistical hypothesis test against the threshold.  The WSSR statistic is estimated over some 
finite window of N samples, that is, the WSSR statistic ( )ρ A  is defined by  
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2
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k N
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≡ ≥∑
A

A
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and the associated hypothesis test is 

                                                 
♦ Whiteness implies temporally uncorrelated samples along with an impulse-like autocorrelation (whiteness 
test) or equivalently a flat power spectrum. 
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1( ) ,

H

Ho
ρ τ>

≤A       (13) 

where Ho  is the hypothesis that the model "fits" the data (white innovations), while H1  is the hypothesis 
that there is a mismatch or change specified by non zero-mean, non-white innovations. Under the zero-
mean assumption, the WSSR statistic is equivalent to testing that the innovations sequence is white. Under 
Ho , WSSR is distributed χ 2(NL).  It is possible to show8 for a large NL>30 and a level of significance of 
α = 0.05,  the threshold is given by 
  τ = NL +1.96 NL .       (14) 
Here the window is designed to slide through the innovations data and estimate its whiteness.  Even in the 
worst case where these estimators may not prove to be completely consistent, the processor (when tuned) 
predicts the nonstationary innovations covariance, σε

2(k)  enabling a simple (varying with A ) confidence 
interval to be constructed and used for testing similar to Eq. (12) above.  Thus, overall performance of the 
processor can be assessed by analyzing the statistical properties of the innovations. This completes the 
description of the MBP, next we consider a simulation of the data and processor to predict the expected 
performance. 
 

POSITION ESTIMATION FOR THE KDP BEAM LINE 
 

In this section we discuss the application of optimal position estimators based on daily historical 
position estimates (data base) provided by the KDP algorithm. The data are a record of 48 days of final 
positions output from both the accurate reference system (reference data) and the estimated final position 
output from the KDP back-reflection data coupled to a phase-only matched filter4 imaging algorithm. The 
motivation for applying the model-based approach to this data set is to obtain a more accurate and precise 
estimate of error deviations from the reference characterizing the overall control loop performance in that 
position of the beam line. Theoretically, the position deviations between the reference and the KDP 
estimates should ideally be zero, but because of the beam line noise and variations, CCD camera limitations 
and control system tolerances, this is not the case. Instead the overall error statistics are used to bound the 
performance and assure that they remain within design specification from the error budget to achieve the 
overall project success (ignition). A scatter plot of the xy-positions from the reference (circles) and the raw 
KDP back reflection position estimates are shown in Fig. 2. Even though the actual estimates are grouped 
into two separate clusters due to improvements in the beam line over the 48 day period, the deviations 
between them should tend to cluster about zero. 

MBP Design 
In the design of the MBP the usual procedure is to: (1) develop the required models; (2) simulate a 

set of position data characterized by any of the a-priori information available; (3) develop the minimum 
error variance design; and (4) apply the processor to the available data set evaluating its performance. 

We developed the basic model set assuming a Gauss-Markov structure as in Sec. II .  These 
parameters of this model were estimated from the statistics of a large ensemble (> 5000) of images and 
performance statistics of the KDP centroiding algorithm. We used this information to construct the initial 
simulation of the MBP to “match” with the historical data available (48 days) and the corresponding 
ensemble statistics.   

Thus, our approach is to first perform a simulation of the measurement process using estimated 
statistics from the data and then apply it to the actual data. During the simulation phase, we are able to 
analyze the performance of the MBP and assure ourselves that all of the models and statistics are correct. 
We expect to obtain the minimum variance estimates, if not, then it is usually an implementation issue. 
Once the simulation and model adjustments have been made, we apply the processor to the measured data.  

Gauss-Markov Simulation 
Now that we have developed the models and have some estimates from the ensemble statistics of the data 
base, we are now able to perform a Gauss-Markov simulation to assess the feasibility of the MBP. We 
simulated a set of data based on the following parameters using the mean XY-position estimates, that is, 

1.96
ii x ix µ σ= ±  for both the measured and reference data: 

[ ](0) 344 8, 270 13.8, 344 7.8, 270 14.4 ′= ± ± ± ±x . We used the mean values as the initial position 
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estimates with low error variances ( 61 10−× ). We chose an uncorrelated measurement (deviation) noise 
covariance matrix as: [ ]diag 3.8 3.9vvR = . The process noise covariance selected is 

(1) 0 0.01 0.0053 0.01 0.00753
   for   (1) ;    (2)
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Fig. 3.   Scatter plot of reference (O) and raw KDP position estimates (+). 
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The synthesized positions have small variations due to the process noise, but are essentially 
constants (mean values). The simulated noisy DX, DY-deviation measurements (dotted line) including the 
process and measurement noise are shown in Fig. 4. Next we executed the MBP over this data set and the 
position deviations (solid line)  are also shown in the figure. Here we see that much of the raw 
measurement and process noise have been removed by the processor and only the deviation errors are 
shown. Recall that they should be close to zero for the alignment control system to be operating efficiently.  
To get a better feel for the overall improvement contributed by the MBP, we can compare the scatter plots 
of the raw and processed (estimated) deviations. We calculated the corresponding two-sigma covariance 
(error) ellipsoids8 that bound 95% of the deviations. These ellipsoids should be centered at zero (0 DX, DY) 
and the major and minor axes should be as small (better precision) as possible. Clearly from Fig. 5, we see 
that the estimated deviations satisfy this constraint much better than the raw position deviations.  

To validate the results, we investigate the minimum variance design procedure. We show the 
innovations sequences in Fig. 6a associated with each deviation along with their corresponding zero-
mean/whiteness tests in 6b and the WSSR test in 6c. It is clear from the figure that both sequences are zero-
mean: (0.12<0.68; 0.11<0.80); white: (4% out; 0% out); and WSSR decision function lies below the 
threshold for a window of size N: (Threshold=69.6, N=25). These statistics indicate that the minimum 
variance position deviation estimates have been achieved. This result is expected, since the models used in 
the MBP are identical to those in the Gauss-Markov simulator. However, the results can be interpreted as 
the “best” (minimum variance) one could hope to do under these circumstances. Next we apply the MBP to 
the actual deviation data. 

KDP Deviation Data 
In order to process the KDP deviation data, we must develop parameters for the underlying model 

embedded in the processor. We start with guesses of the noise (process and measurement) statistics from 
the simulator and then adjust them accordingly. For instance, if the innovation sequence lies outside its 
predicted bounds implying that the measurement noise variance is too small, then it can be adjusted to 
satisfy this constraint (see Ref. 6 for more details) and “match” the data.  The process noise is actually quite 
difficult to fit, since it is directly proportional to the MBP gain. In essence, once all of the other model 
parameters are reasonably adjusted, they are then held fixed and the process noise covariance is varied to 
achieve the “best” possible (minimum error variance) innovations statistics (zero-mean/white, WSSR 
belowτ ).  

The results of the MBP design for the deviation data are shown in Figs. 7-10. We see the raw KDP 
position deviation estimates along with the optimal processor results over the 48 day period in Fig. 7. It is 
clear that the processor is tracking the trends in the data while reducing the noise or equivalently enhancing 
the SNR. To confirm this we observe the two-sigma error ellipsoid plots of Fig. 8 where we observe that 
much of the uncertainty has been removed and the estimated deviations are clearly clustered (centered) 
around the (0,0) position and have a much smaller ellipsoid (better precision) than the raw data. Again to 
confirm the optimality of the processor we check the zero-mean/whiteness/WSSR statistics (see Fig. 9) 
which give the following results.  It is clear from the figure that both sequences are zero-mean: 
(0.2.2<0.71; 0.1<0.69); white: (0% out; 0% out); and WSSR decision function lies below the threshold for 
a window of size N: (Threshold=69.6, N=25). These statistics again indicate that the minimum variance  
design has been achieved and the processor along with its associated statistics are valid and optimal. With 
this in mind we can also observe the performance of the MBP in estimating (filtering) both measured KDP 
and reference positions. The results are shown in Fig. 10. Here we see the estimated (filtered) positions 
observing that they are random (conditional mean) and vary slightly from the initial means indicating that 
the process noise is not too severe in this case. This completes the MBP design for the position estimation 
problem.  
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Fig. 5. Two sigma error ellipsoid for XY-position deviations from simulated data: Raw deviations (larger) 
and estimated (smaller). 
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Fig. 7.  Actual KDP XY-deviations: Raw (dotted) and estimated (solid). 
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Fig. 9.  Actual MBP design for XY-position deviations: (a) Innovations for 
X-deviation and Y-deviation. (b) Optimality tests: Zero-mean  (0.2.2<0.71; 0.1<0.69)  
and whiteness (0% out; 0% out) (c) WSSR test (threshold=69.6, N=25). 
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Fig. 10. Estimated XY-positions: (a) Measured data estimates. (b) Reference data estimates. 

CONCLUSIONS 
The feasibility of apply model-based signal processing techniques to noisy beam position 

measurement data for the automatic alignment of a high energy laser has been demonstrated on both 
simulated and actual data sets. After motivating the need for an on-line post-processor capable of 
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significantly improving position deviation estimates for automatic beam control, we developed the required 
theory to define the problem in the Gauss-Markov framework leading to an optimal model-based processor 
(MBP) solution (Kalman filter). The design of the processor was accomplished using a third party toolbox 
in MATLAB9, SSPACK_PC.10  It was carefully orchestrated on both simulated and actual historical beam 
line data for the KDP crystal loop at the National Ignition Facility (NIF). It was shown that the minimum 
error variance design (zero-mean/white innovations) could be achieved for these data sets.  

Further work must proceed to validate the model-based approach performance on other beam 
lines. The on-line MBP should be incorporated into the actual control loops with a feedback gain to 
automate the alignment control system in attempting to achieve zero deviations. Daily data should be 
processed to obtain more realistic uncertainty measures relative to these position deviations under a wide 
variety of off-normal conditions to insure proper operation. In conclusion, we feel that the MBP can 
provide the mechanism towards achieving a truly automatic alignment system.  
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